skip to main content


Search for: All records

Creators/Authors contains: "Ehn, Mikael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis have been shown to be significant contributors to secondary organic aerosol (SOA), yet our mechanistic understanding of how the peroxy-radical-driven autoxidation leads to their formation in this system is still limited. The involved isomerisation reactions such as H-atom abstractions followed by O2 additions can take place on sub-second timescales in short-lived intermediates, making the process challenging to study. Similarly, while the end-products and sometimes radical intermediates can be observed using mass spectrometry, their structures remain elusive. Therefore, we propose a method utilising selective deuterations for unveiling the mechanisms of autoxidation, where the HOM products can be used to infer which C atoms have taken part in the isomerisation reactions. This relies on the fact that if a C−D bond is broken due to an abstraction by a peroxy group forming a −OOD hydroperoxide, the D atom will become labile and able to be exchanged with a hydrogen atom in water vapour (H2O), effectively leading to loss of the D atom from the molecule. In this study, we test the applicability of this method using three differently deuterated versions of α-pinene with the newly developed chemical ionisation Orbitrap (CI-Orbitrap) mass spectrometer to inspect the oxidation products. The high mass-resolving power of the Orbitrap is critical, as it allows the unambiguous separation of molecules with a D atom (mD=2.0141) from those with two H atoms (mH2=2.0157). We found that the method worked well, and we could deduce that two of the three tested compounds had lost D atoms during oxidation, suggesting that those deuterated positions were actively involved in the autoxidation process. Surprisingly, the deuterations were not observed to decrease HOM molar yields, as would have been expected due to kinetic isotope effects. This may be an indication that the relevant H (or D) abstractions were fast enough that no competing pathways were of relevance despite slower abstraction rates of the D atom. We show that selective deuteration can be a very useful method for studying autoxidation on a molecular level and likely is not limited to the system of α-pinene ozonolysis tested here.

     
    more » « less
  2. Abstract The interaction between nitrogen monoxide (NO) and organic peroxy radicals (RO 2 ) greatly impacts the formation of highly oxygenated organic molecules (HOM), the key precursors of secondary organic aerosols. It has been thought that HOM production can be significantly suppressed by NO even at low concentrations. Here, we perform dedicated experiments focusing on HOM formation from monoterpenes at low NO concentrations (0 – 82 pptv). We demonstrate that such low NO can enhance HOM production by modulating the RO 2 loss and favoring the formation of alkoxy radicals that can continue to autoxidize through isomerization. These insights suggest that HOM yields from typical boreal forest emissions can vary between 2.5%-6.5%, and HOM formation will not be completely inhibited even at high NO concentrations. Our findings challenge the notion that NO monotonically reduces HOM yields by extending the knowledge of RO 2 -NO interactions to the low-NO regime. This represents a major advance towards an accurate assessment of HOM budgets, especially in low-NO environments, which prevails in the pre-industrial atmosphere, pristine areas, and the upper boundary layer. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. null (Ed.)
    Abstract Oxidation chemistry controls both combustion processes and the atmospheric transformation of volatile emissions. In combustion engines, radical species undergo isomerization reactions that allow fast addition of O 2 . This chain reaction, termed autoxidation, is enabled by high engine temperatures, but has recently been also identified as an important source for highly oxygenated species in the atmosphere, forming organic aerosol. Conventional knowledge suggests that atmospheric autoxidation requires suitable structural features, like double bonds or oxygen-containing moieties, in the precursors. With neither of these functionalities, alkanes, the primary fuel type in combustion engines and an important class of urban trace gases, are thought to have minor susceptibility to extensive autoxidation. Here, utilizing state-of-the-art mass spectrometry, measuring both radicals and oxidation products, we show that alkanes undergo autoxidation much more efficiently than previously thought, both under atmospheric and combustion conditions. Even at high concentrations of NO X , which typically rapidly terminates autoxidation in urban areas, the studied C 6 –C 10 alkanes produce considerable amounts of highly oxygenated products that can contribute to urban organic aerosol. The results of this inter-disciplinary effort provide crucial information on oxidation processes in both combustion engines and the atmosphere, with direct implications for engine efficiency and urban air quality. 
    more » « less
  4. Abstract. Oxygenated organic molecules (OOMs) are the crucial intermediates linkingvolatile organic compounds (VOCs) to secondary organic aerosols (SOAs) in theatmosphere, but comprehensive understanding of the characteristics of OOMsand their formation from VOCs is still missing. Ambient observations ofOOMs using recently developed mass spectrometry techniques are stilllimited, especially in polluted urban atmospheres where VOCs and oxidants areextremely variable and complex. Here, we investigate OOMs, measured by anitrate-ion-based chemical ionization mass spectrometer at Nanjing ineastern China, through performing positive matrix factorization on binnedmass spectra (binPMF). The binPMF analysis reveals three factors aboutanthropogenic VOC (AVOC) daytime chemistry, three isoprene-relatedfactors, three factors about biogenic VOC (BVOC) nighttime chemistry, andthree factors about nitrated phenols. All factors are influenced by NOxin different ways and to different extents. Over 1000 non-nitro moleculeshave been identified and then reconstructed from the selected solution ofbinPMF, and about 72 % of the total signals are contributed bynitrogen-containing OOMs, mostly regarded as organic nitrates formed throughperoxy radicals terminated by nitric oxide or nitrate-radical-initiatedoxidations. Moreover, multi-nitrates account for about 24 % of the totalsignals, indicating the significant presence of multiple generations,especially for isoprene (e.g., C5H10O8N2 andC5H9O10N3). Additionally, the distribution of OOMconcentration on the carbon number confirms their precursors are driven by AVOCsmixed with enhanced BVOCs during summer. Our results highlight the decisiverole of NOx in OOM formation in densely populated areas, and we encouragemore studies on the dramatic interactions between anthropogenic and biogenicemissions. 
    more » « less
  5. Abstract. While the role of highly oxygenated molecules (HOMs) in new particleformation (NPF) and secondary organic aerosol (SOA) formation is not indispute, the interplay between HOM chemistry and atmospheric conditionscontinues to draw significant research attention. During the Influence ofBiosphere-Atmosphere Interactions on the Reactive Nitrogen budget (IBAIRN)campaign in September 2016, profile measurements of neutral HOMs below andabove the forest canopy were performed for the first time at the borealforest SMEAR II station. The HOM concentrations and composition distributionsbelow and above the canopy were similar during daytime, supporting awell-mixed boundary layer approximation. However, much lower nighttime HOMconcentrations were frequently observed at ground level, which was likely dueto the formation of a shallow decoupled layer below the canopy. Near theground HOMs were influenced by the changes in the precursors and oxidants andenhancement of the loss on surfaces in this layer, while the HOMs above thecanopy top were not significantly affected. Our findings clearly illustratethat near-ground HOM measurements conducted under stably stratifiedconditions at this site might only be representative of a small fraction ofthe entire nocturnal boundary layer. This could, in turn, influence thegrowth of newly formed particles and SOA formation below the canopy where thelarge majority of measurements are typically conducted. 
    more » « less
  6. A major fraction of atmospheric aerosol particles, which affect both air quality and climate, form from gaseous precursors in the atmosphere. Highly oxygenated organic molecules (HOMs), formed by oxidation of biogenic volatile organic compounds, are known to participate in particle formation and growth. However, it is not well understood how they interact with atmospheric pollutants, such as nitrogen oxides (NO x ) and sulfur oxides (SO x ) from fossil fuel combustion, as well as ammonia (NH 3 ) from livestock and fertilizers. Here, we show how NO x suppresses particle formation, while HOMs, sulfuric acid, and NH 3 have a synergistic enhancing effect on particle formation. We postulate a novel mechanism, involving HOMs, sulfuric acid, and ammonia, which is able to closely reproduce observations of particle formation and growth in daytime boreal forest and similar environments. The findings elucidate the complex interactions between biogenic and anthropogenic vapors in the atmospheric aerosol system. 
    more » « less